
1

 Service Application Engine™
 A Collaborative Computing Platform for Cloud and Web

HTTP and REST Application Programming Interface
Release 3.3

Copyright

HTTP and REST Application Programming Interface 2

Copyright 2007-2012 StreamScape Technologies. The trade name StreamScape and the product names Service
Application Engine™ and Service Event Fabric™ are trademarks of StreamScape Technologies. This document may
not be reproduced in any medium without the express permission of StreamScape Technologies LLC.

For problems and issues with this documentation please contact us at support@streamscape.com

mailto:support@streamscape.com

 Using the REST API

HTTP and REST Application Programming Interface 3

Table of Contents

Table of Contents .. 3

Document Conventions ... 4

REST API Overview ... 5

Representational State Transfer (REST) .. 5

REST Architecture ... 5

REST Interface Principles .. 7

RESTful Web Services and API .. 8

Using the REST API ... 9

Accessing Service Engine Resources ... 9

Application Engine Clients .. 13

Security Considerations .. 13

RESTful API Guide .. 19

Invoke Service ... 22

Raise Event .. 25

Raise Request .. 27

Receive Event .. 30

Receive Event with NoWait .. 32

Querying Service Configuration ... 33

Get Service List .. 33

Get Service Reference ... 33

Get Service Actionable Events .. 34

Get Service Event Handlers ... 34

Get Service Event Handler .. 35

Get Service Configuration Object ... 35

Get Service Request Object .. 36

Get Service Response Object .. 37

Get Service Request Event .. 38

Get Service Response Event .. 39

Browsing the Entity Repository ... 40

Document Conventions

HTTP and REST Application Programming Interface 4

Document Conventions

This document uses the following font conventions:

Italic text is intended to express conceptual terms that are part of StreamScape taxonomy and terminology. The
intent is to provide users with indicators of terms that are used to define architectural concepts and functions.

Source code samples and output are presented in boxed Courier New font for example:

General script and command syntax examples are provided using embedded Courier New text, for example:

The Java Archive is located in the <install_root>/platform/lib directory.

Semantic Language Commands (SLANG), Event Definition Language (EDL) and Data Space Query Language (DSQL)
syntax and command verbs are expressed in BOLD UPPER CASE, for example:

INSERT INTO and LIST COMPONENTS

When describing command syntax and language elements the following conventions will be used based on a
simplified EBNF notation:

<Token> Required value or parameter that is an identifier

[Token] Optional value or parameter that is an identifier

‘<Token>’ Required alphanumeric string

‘[Token]’ Optional alphanumeric string

{Token1 | Token2} Required value that may be one of the specified choices

<Expr> A substitution expression that resolves to a single value of the specified data type

<Token = Value> Assignment

<Token == Value> Equality

tnode –init -log –dir C:\StreamScape\nodes\demo -ddx C:\StreamScape\deploy\demo

REST Concepts Overview

HTTP and REST Application Programming Interface 5

REST API Overview

Representational State Transfer (REST)

Representational State Transfer (REST) is a style of data exchange between two software components within a
distributed system, such as the World Wide Web. Although technically it is just a data exchange pattern, REST has
emerged over the past few years as a predominant Web Service architecture model. As of this writing, thousands
of applications, Cloud System developers, Web and mobile application designers have used the REST design model
to offer full service platforms, mash-up and widget capabilities to their users; resulting the emergence of a so-
called API Economy.

By strict definition of REST constraints, a client application makes a synchronous request to a resource provider and
receives back some data. This information now represents the new state of the client application. For example an
application may request authentication with a back-end system by passing a security credential to the resource
provider. The result of such a request may be an authenticated session identifier. This allows the client to
transition into a trusted (authenticated) mode, ready to transmit secure work requests. A subsequent request may
return a list of available resource providers or services that a client application may make use of.

While this concept is not new (mainframe systems used to call such exchanges conversational programs), its
application to distributed system design is a relatively recent development. Whereas legacy systems focused on
conversational interactions between a single client and a server, REST –based systems allow the same client
application to access a broad range of resource providers. This model offers developers the ability to compose
applications from a variety of resources and capabilities, leading to new synergies and innovation.

The term representational state transfer was introduced in 2000 by Roy Fielding, one of the principal authors of
the Hypertext Transfer Protocol (HTTP) specification. REST as an architectural style was developed in parallel
with HTTP/1.1. The largest implementation of a system conforming to the REST architectural style is the World

Wide Web itself. REST exemplifies how the Web's architecture and application design evolved based on the
interactions of four key components of the Web: origin servers, gateways, proxies and clients, without imposing
limitations on individual participants.

As an architectural approach REST –based applications are complementary to Collaborative Computing systems
because they promote self-governance and proper behavior of participants. From a technology perspective, REST
constraints limit the communication model, thereby simplifying implementation and ultimately, reducing cost.
Conforming to the REST Constraints outlined below is generally referred to as being "RESTful".

REST has increasingly displaced other interface design models such Messaging, SOAP and WSDL due to its simpler
style and flexibility of format and protocol. Most REST –based implementations conform to some of the
constraints but do not enforce the strict definition of application state transitions described above. As such,
RESTful applications make use of the concepts to facilitate a simpler and more flexible RPC mechanism. The
Service Application Engine™ supports all REST constraints including Layering and On-Demand Code facilities.

REST Architecture

REST-style architectures consist of clients and servers. Clients initiate requests to servers; servers process requests
and return appropriate responses. Requests and responses are built around the transfer of resource
representations. A resource is any structured and meaningful concept that may be located by a discrete resource
address, a so-called Uniform Resource Identifier (URI). The representation of a resource is typically a document or
similar structured data unit that captures the current or intended state of a resource.

What is particularly interesting about the REST architecture is that resource state may represent conversational
sessions, application services or transactions, or a combination of such elements without restrictions. Consider the

http://en.wikipedia.org/wiki/World_Wide_Web
http://en.wikipedia.org/wiki/Web_service
http://en.wikipedia.org/wiki/Mashup_(web_application_hybrid)
http://en.wikipedia.org/wiki/Software_widget
http://en.wikipedia.org/wiki/Client_(computing)
http://en.wikipedia.org/wiki/Resource_(Web)
http://en.wikipedia.org/wiki/Client_(computing)
http://en.wikipedia.org/wiki/Resource_(Web)
http://en.wikipedia.org/wiki/Server_(computing)
http://en.wikipedia.org/wiki/Roy_Fielding
http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
http://en.wikipedia.org/wiki/World_Wide_Web
http://en.wikipedia.org/wiki/World_Wide_Web
http://en.wikipedia.org/wiki/Upstream_server
http://en.wikipedia.org/wiki/Gateway_(telecommunications)
http://en.wikipedia.org/wiki/Proxy_server
http://en.wikipedia.org/wiki/Client_(computing)
http://en.wikipedia.org/wiki/Representational_state_transfer#Constraints
http://en.wikipedia.org/wiki/Message-oriented_middleware
http://en.wikipedia.org/wiki/SOAP
http://en.wikipedia.org/wiki/WSDL
http://en.wikipedia.org/wiki/Client_(computing)
http://en.wikipedia.org/wiki/Server_(computing)
http://en.wikipedia.org/wiki/Resource_(Web)
http://en.wikipedia.org/wiki/Representation_(systemics)

 Using the REST API

HTTP and REST Application Programming Interface 6

example of a well-known Shopping Cart application when re-implemented as a REST –based system: A consumer
must enter the Store by providing a security credential and identify themselves. As a result of this operation the
REST resource provider validates a consumer and puts the consumer application into a ready state by returning a
session token and the address of the next resource manager. An application communicates its readiness by
accessing the consumer’s Profile and Preference information from a resource at the specified location (URI).

The profile document returned to a consumer may be (and frequently is) augmented by promotional advertising
targeted at the individual. If this is a returning customer the system may offer additional incentives by including
links to other store resources. Adding items to a Shopping Cart begins an actual purchasing session and may
potentially result in reservation of funds on behalf of the consumer, for example by contacting PayPal or a similar
online payment system.

If a Shopping Session is interrupted for some reason and the consumer application remains functioning it may
potentially cache session information and credentials. When communication is re-established the application can
request to be re-directed to the same resource provide it was using and complete the transaction without the
need to re-enter information. REST facilitates transactions between resources by allowing loose coupling of
services and their consumers, potentially without sacrificing control over session state.

This approach to application state management allows server-side implementations to be essentially Stateless and
provides for a high degree of fault tolerance and scalability without the need for developing complex back-end
systems to manage session state. REST resource managers are abstracted, resulting in a Layered architecture that
easily facilitates load balancing and caching of critical data.

The Service Application Engine™ is purpose-built to support REST application and provides session control, load
balancing and data caching as well as Asynchronous HTTP Communication extensions in addition to transaction
access to in-memory resources making it an ideal intermediary (proxy) for RESTful client applications.

REST is weak-typed when compared to its SOAP counterpart. There is no schema enforcement and no standard
for data exchange beyond Standard General Markup Language (SGML). REST commands are based on the use of

nouns and verbs typically found in the HTTP protocol (such as GET, PUT, POST and DELETE) with emphasis on
readability and data access. This makes the REST operation set closer the CRUD Matrix operations of a database
engine. Unlike SOAP, REST is not completely dependent on XML parsing or rendering technologies and does not
have a protocol specification or a formal interface definition language, thus making more compact and versatile.

The REST model describes the following six constraints applied to an architecture model that make it RESTful:

Client–Server

A uniform interface separates clients from servers. This separation of function means clients have no dependency
on data storage, language or the specifics of a resource server implementation; thus improving client the portability
and making it server-agnostic. Resource servers are not concerned with the applications overall interface or state,
making server implementations simples and more scalable. Format of the client-server interaction is user defined
allowing system components to be developed in a decoupled fashion, replaced or developed independently.

Stateless

Client context does not have to be stored or represented on the server between requests. While this capability
may be provided as a combination of client-side caching and intermediate proxy technologies a resource server is
not aware of client application state in contrast to traditional database and application server technologies.

Each request from a REST client contains all of the information necessary to service the request, and any session
state is maintained by a client or intermediary as necessary. Although a resource server may be stateful this
constraint merely implies that the client request (URL) provide enough information to address a server-side state
manager (for example by providing a session id). This option makes servers more visible for monitoring, and also
makes them more reliable and scalable in the face of partial network failures.

http://en.wikipedia.org/wiki/Loose_coupling
http://en.wikipedia.org/wiki/SOAP
http://en.wikipedia.org/wiki/Create,_read,_update_and_delete
http://en.wikipedia.org/wiki/XML
http://en.wikipedia.org/wiki/Client%E2%80%93server
http://en.wikipedia.org/wiki/Separation_of_concerns
http://en.wikipedia.org/wiki/Software_portability
http://en.wikipedia.org/wiki/Scalability
http://en.wikipedia.org/wiki/Stateless_server
http://en.wikipedia.org/wiki/Stateful
http://en.wikipedia.org/wiki/Website_monitoring
http://en.wikipedia.org/wiki/Reliability_(computer_networking)
http://en.wikipedia.org/wiki/Scalability

 Using the REST API

HTTP and REST Application Programming Interface 7

Cacheable

Clients or REST intermediaries may cache responses. Therefore responses must implicitly or explicitly, define
themselves as cacheable, or not, to prevent clients from using stale or inappropriate data as the basis for further
requests. Well-managed caching partially or completely eliminates some client–server interactions, further
improving scalability and performance.

Layered System

A client is abstracted from the resource server and cannot typically determine if it is connected directly to the end
server, or to an intermediary along the way. REST intermediaries may improve system scalability by enabling load-
balancing, providing shared caches, session management or enforcing security policies.

Code on Demand (optional)

Servers are able to extend or customize the functionality of a client by the transfer (download) of executable code
into the client application’s runtime environment. Examples of this may include compiled components such
as Java Applets, Semantic Type objects, Event Prototype definitions used by the Service Application Engine™ or
client-side scripts such as Java Script.

Uniform Interface

A uniform interface between clients and servers simplifies and decouples the architecture, enabling each
component to evolve independently. The guiding principles of a REST interface are detailed below. While the
there is no format specification for an interface definition in REST –based systems it is expected that data exchange
between participants occurs using structured data elements that are self-describing over the HTTP protocol or one
of its secure variants. Complying with the so-called REST Principles and architectural style, enables a variety of
distributed hypermedia systems with desirable emergent properties, such as performance, scalability, simplicity,
modifiability, visibility, portability and reliability.

REST Interface Principles

A key concept in RESTful systems is the existence of resources (sources of specific information), each of which is
referenced with a global identifier (such as a URI in HTTP). To manipulate these resources, components of the
REST system communicate via a standardized protocol (such as HTTP) and exchange representations of resources
(potentially documents or objects conveying information). For example, a resource that represents a Purchase
Order may accept a representation that specifies a list of items to purchase and billing information, and return a
Purchase Conformation or Receipt formatted as a PDF document or a URL pointing to the resource.

As such, a REST client application can interact with a resource by knowing only two things: the identifier of the
resource and the action required—it does not need to know whether there are caches, proxies, gateways,
firewalls, tunnels, or other intermediaries between it and the resource server delivering the information.
However, the application does need to understand the format of the information (representation) returned, which
is typically an HTML, XML or JSON document, although it may be image, plain text, or any other content. The
uniform interface that any REST resource provides is considered fundamental to design of any REST service.

Identification of Resources

Resources are identified in requests, for example using URIs in web-based REST systems. The resources and their
location are conceptually separate from the representations that are returned to the client. For example, a data
server may return HTML, XML or JSON that represents a set of information requested by the user application and
may return such results in different formats or languages based on request URL.

http://en.wikipedia.org/wiki/Web_cache
http://en.wikipedia.org/wiki/Layered_system
http://en.wikipedia.org/wiki/Client-side_scripting
http://en.wikipedia.org/wiki/Java_applet
http://en.wikipedia.org/wiki/JavaScript
http://en.wikipedia.org/wiki/Representational_state_transfer#Guiding_principles_of_a_REST_interface
http://en.wikipedia.org/wiki/Emergence
http://en.wikipedia.org/wiki/Resource_(Web)
http://en.wikipedia.org/wiki/Uniform_Resource_Identifier
http://en.wikipedia.org/wiki/Portable_Document_Format
http://en.wikipedia.org/wiki/HTML
http://en.wikipedia.org/wiki/XML
http://en.wikipedia.org/wiki/JSON
http://en.wikipedia.org/wiki/Uniform_Resource_Identifier
http://en.wikipedia.org/wiki/HTML
http://en.wikipedia.org/wiki/XML
http://en.wikipedia.org/wiki/JSON

 Using the REST API

HTTP and REST Application Programming Interface 8

Representation-Driven Data Modifications

A client holding a representation of a resource, including any metadata attached, should have enough information
to modify or delete the resource on the server, provided it has permission to do so. Depending on the type of data
being modified, resource representation may vary. For example a Key-Value data collection such as a MAP may
simply require a Key in order to modify or delete the resource.

The Service Application Engine™ provides a variety of representational state objects including a Query object for
working with SQL Queries, Row and Row Set objects.

Self-Descriptive Data Exchange

Exchange of information between REST system participants should occur using self-describing data. Each datum
should include enough information to describe how to process the message. For example, a data element may
include information about which parser to invoke and may specify an Internet Media Type (previously known as
a MIME type). Data elements may also explicitly indicate their cache-ability to indicate whether their content is
‘sticky’ and will be retained by the client or the intermediary.

For example the service engine uses Event Datagrams as a mechanism for structured data exchange and allows the
users to declare data content as durable instructing the engine intermediary to cache data produced by event
publishers or create data collections that explicitly stored data in memory.

Hypermedia as the Engine of Application State

In a REST –based system client applications make state transitions as a result of actions represented as hypermedia
to the resource server (ie. by hyperlinks within hypertext). The client application is aware of general application
access points (as specified by the URI), but does not otherwise assume that any particular actions or operation will
be available for a given resource beyond those described in representations previously received from the server.
In other words, the state of an application is the sum total of data received thru representation objects.

While this style of application design may be less applicable to traditional client applications that make use of
application-local data, it is ideal for composite application design, self –provisioning portals and other systems
wherein interaction occurs thru discovery of resources and navigation between resource servers.

RESTful Web Services and API

SOA Services implemented using HTTP and the principles of REST are referred to as RESTful Web Services. This is
also referred to as a RESTful Web API; and provides a structured programming interface for exposing complete
business functionality to application developers in a controlled, cost-effective fashion. REST –based Web Services
allow users to access a collection of resources in a structured fashion, using the following guidelines:

 Server resources must be addressable by a base URI, such as http://example.com/resources/

 Resource data must be represented via some Internet Media Type supported by the Web Service. This is
often JSON, XML or YAML but can be any other valid media type including binary (Base64 encoded) type.

 Command verbs, modifiers and data must be presentable as URL content and contain a complete set of
information that allows a client application to query, modify or delete REST resources.

 Web Service operations typically map to HTTP methods (e.g., GET, PUT, POST, or DELETE).

 The API must be Hypertext –driven, allowing HTTP and Browser applications to access resources .

http://en.wikipedia.org/wiki/Metadata
http://en.wikipedia.org/wiki/Internet_media_type
http://en.wikipedia.org/wiki/MIME
http://en.wikipedia.org/wiki/HATEOAS
http://en.wikipedia.org/wiki/Hyperlink
http://en.wikipedia.org/wiki/Hypertext
http://en.wikipedia.org/wiki/Web_API
http://en.wikipedia.org/wiki/Internet_media_type
http://en.wikipedia.org/wiki/JSON
http://en.wikipedia.org/wiki/XML
http://en.wikipedia.org/wiki/YAML
http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods

Using the REST API

HTTP and REST Application Programming Interface 9

Using the REST API

The Service Application Engine™ provides full support for REST –based Web Services and allows users to expose all
application fabric components using a RESTful Web API. Web Service developers have access to the following
resources that may be invoked thru a REST API:

 Java classes deployed as Application Fabric Services

 Event Fabric™ facilities for raising an consuming Events

 Application Data Spaces™ for query and modification of Data Collections

 Back-end (pass-thru) resources such as Databases, FTP and legacy systems

 Files and Unstructured Data resources accessible via Fabric Services

 Micro-flows for automating Business Processes composed from Fabric Services

 User Profiles and Identity information

Accessing Service Engine Resources

By default an application engine disables HTTP access to it’s resources. This is done to limit the number of initial
Access Points into an application fabric SYSPLEX and simplify configuration. Core topology of the overlay network
formed by service engine nodes is configured thru the Directory Table that is managed by an Exchange Discovery
Manager. The SYSPLEX establishes connections between nodes using the TruLink Protocol, potentially allowing
all fabric participants to see every resource within the application domain.

Specific resource visibility is dependent on the resource component’s event scope, providing a way to secure and
limit access to application fabric resources. However the inherent nature of service engine communications means
that any resource may be accessed from an HTTP client on any node. In the diagram below participants labeled N
are fabric nodes that do not host resources, C represents client components such as HTTP clients. Participants
labeled R represent resources such as service methods that may be invoked, data collections that may be queried
or modified and events that may be raised or consumed. All topology combinations described below are possible:

1
Access by Proxy allowing a client to connect

 to a proxy node and access remote resources.

2

Embedded Client access allows clients to

 access resources by opening an Accessor to
 a Service or Data Space, or to raise Events.

3
 Direct Access allowing a client to connect to

 a fabric node and access its Services and Data
 Spaces or to raise Events.

4
 Access by Service Proxy allows users to create

 Service resources that are themselves proxy
 clients to other resources, accessible from
 other client participants.

 Using the REST API

HTTP and REST Application Programming Interface 10

Configuring HTTP Acceptors

An acceptor is a socket listener that supports a specific network protocol. Protocol acceptors are configured by
editing their XML Data Object (XDO) files located in the fabric cache directory (.tfcache). The object type of the
data object is always HTTPAcceptor and the acceptor’s name must be the instance name. In the example below
the name of the acceptor file resolves to HTTPAceptor.Default.xdo

Acceptors may be auto-started by the engine or they may be controlled manually thru the SLANG language
environment. Like any other repository artifact an acceptor configuration object is locked by the runtime to
prevent unauthorized editing. An acceptor that is defined with a host name of localhost will not be accessible
by remote clients. Also note that on certain platforms such as Windows, new port allocations may be
automatically blocked by Firewall software.

In addition to standard set of information regarding host and port names the HTTP acceptor supports the
anonymousRegistration parameter that indicates whether or not the acceptor supports ability of users to self-
register with the fabric; a setting that is potentially unsecure.

The XML snippet below shows a typical HTTP acceptor configuration. It is incomplete and does not include security
information, REALM definitions or URL path mappings. It is provided for sample purposes and should not be used
as an actual acceptor configuration object:

<?xml version="1.0"?>

<HTTPAcceptor>

 <configuration>

 <name>Default</name>

 <description>Default HTTP acceptor</description>

 <isAutoStart>true</isAutoStart>

 <host>localhost</host>

 <port>8099</port>

 <anonymousRegistration>true</anonymousRegistration>

 <logEachRequest>false</logEachRequest>

 Using the REST API

HTTP and REST Application Programming Interface 11

 <logUserAgent>false</logUserAgent>

 <logReferer>false</logReferer>

 <compressResponse>false</compressResponse>

 <storeSessions>false</storeSessions>

 <keepAlive>true</keepAlive>

 <requestLogFormat>{0}:{9} {1} {2} "{4} {5} {6}" {7,number,#}

 {8,number} {10} {11}</requestLogFormat>

 <webApplicationDir>webapps/</webApplicationDir>

 <webArchiveDir>war/</webArchiveDir>

 <backlogSize>50</backlogSize>

 <keepAliveTimeout>15</keepAliveTimeout>

 <sessionTimeout>5</sessionTimeout>

 <checkDeployPeriod>-1</checkDeployPeriod>

 <maxActiveSessionsNumber>-1</maxActiveSessionsNumber>

 <maxRequestsPerConnection>100</maxRequestsPerConnection>

 <maxThreadsInPool>100</maxThreadsInPool>

 <authenticationType>BASIC</authenticationType>

 <sessionAuthentication>false</sessionAuthentication>

 ..

The table below outlines HTTP Acceptor property settings. Not all settings are currently in use:

 Property Name Description

name Distinguished name of an HTTP acceptor

description Description of the acceptor

isAutoStart When TRUE the acceptor is automatically started and bound by the runtime

host Name of the network interface (localhost by default)

port Port number of HTTP listener

anonymousRegistration When TRUE allows new users to dynamically register their ID and Password

logEachRequest When TRUE the acceptor trace file logs all HTTP request

logUserAgent When TRUE the acceptor trace file logs all User Agent requests

logReferer When TRUE the acceptor trace file logs all Domain Referrals

compressResponse When TRUE replies are compressed using GZIP compassion

storeSessions When TRUE the acceptor stores HTTP Session information

keepAlive When TRUE then Keepalive checks are performed

requestLogFormat Specifies the request log format using positional notation

webApplicationDir Specifies application directory for this acceptor in .htcache

webArchiveDir Specifies WAR file pickup directory for this acceptor in .htcache

backlogSize Specified connection back-log size (currently unused)

keepAliveTimeout When Keepalive is used specifies the length of check timeout

sessionTimeout Specifies in minutes how long an inactive Session may remain

checkDeployPeriod Specifies how often to check the WAR deployment directory for new content

maxActiveSessionsNumber Specifies how many HTTP Sessions may be active concurrently

maxRequestsPerConnection Specifies maximum concurrent requests per user Connection

maxThreadsInPool Sets the maximum number of HTTP acceptor threads in pool

authenticationType Indicates BASIC or DIGEST authentication type (see Digest Authentication)

sessionAuthentication Enables or disables x-session-token support (see Delegated Authorization)

 Using the REST API

HTTP and REST Application Programming Interface 12

Base Resource URI

All application fabric resource types are accessible thru a set of base resource URI that are present on every node
that has an HTTP acceptor. However as noted previously the actual resources do not have to be hosted on the
specific node that an HTTP client has connected to. The following resource URI are provided:

 Resource Base URI

Service Access http://< Host >[:< Port >]/service/invoke

Event Dispatcher http://< Host >[:< Port >]/exchange/< Operand >

Service Configuration http://< Host >[:< Port >]/sor/service/< Service Name >/

Node Repository http://< Host >[:< Port >]/repository

Base URI are associated internally with Servlet entities that handle individual requests as specified in the acceptor
configuration object. Users should not change or alter default implementations. The REST API is session –based.
Within the application engine user authorization in the HTTP header is validated against a Client Context that is
created on behalf of an individual user and used to control the HTTP Session.

Request and Response Objects

RESTful API clients exchange information with the application fabric by using request objects and response object
representations. Objects are defined and modeled using the standard Structured Data Object interface. They are
stored by the engine as standard Java classes. Users may model any arbitrary object and use it for data exchange.

The service engine allows use of both Objects and Event Datagrams (that wrap objects) for data exchange. The
former is useful when the RESTful API is used for remoting (remote service method invocation); the latter is more
applicable to situations where users want to raise or consume events that have been raised by other application
fabric components. This allows REST –based applications to seamlessly interoperate with event-driven systems.

The data representational format may be XML or JSON as required by the application. JSON responses are typically
returned in condensed JSON format which is a single text string with all non-essential space characters removed. It
is expected that such data are used to initialize application-side JSON objects. Results may also be compressed
using GZIP compression to reduce the size of a response object. This option is set at the level of the HTTP acceptor
and applies to all responses. It is up to the client application to handle compressed data properly.

The API provides a general set of verbs that may be used to specify request and response data formats. The
&requestFormat verb specifies request format and &responseFormat verb specifies the reply format. Object
serialization and deserialization is carried out by the engine’s Object Mediation Framework. For XML data use of
namespace identifiers is currently not allowed and generally discouraged.

Semantic References

All data structures used by the application fabric are expressed as Semantic Data Types (or simply semantic types).
In StreamScape parlance a semantic type is a data structure that is (i) defined by a short name (ii) resolves to a real
Java class and (iii) includes meta-data pointing to an ancestor type. Ancestors and semantic names do not need to
be structurally related. The Object Mediation Framework allows for registering data structure aliases and arbitrary
ancestor names, allowing users to define application-specific data ontologies that may be queried via the
Repository API. Semantic Types are automatically synchronized between all SYSPLEX members.

The RESTful interface provides access to data object definition, event handler declarations and configuration
objects of services that implement such handlers. This allows API users to query service meta-data, obtain
template representations of request and response objects and discover relationships between semantic types.

 Using the REST API

HTTP and REST Application Programming Interface 13

Access to such information is achieved by using the Semantic Object Reference URL of the appropriate services.
This set of links provides a read-only interface into the global repository that is best accessed via a browser client
because results are returned as HTML content. The interface currently supports basic service repository browsing
and will be expanded in future versions. For more information on Semantic Types see general documentation.

Application Engine Clients

The service engine’s HTTP interface provides a full-capability Web Server, complete with an integrated, realm-
based security mechanism, ability to serve web pages, complete applications packaged as WAR files and support
for popular Web programming tools such as JQuery, AJAX libraries and JavaScript. Web clients may develop
composite applications that make use of the RESTful API, Java Script client or use the engine to develop mash-up
systems that aggregate data from multiple back-end resources.

The REST API may be accessed directly from Web Browsers and Browser-resident tools for API authoring and
testing. HTTP clients such as those from Apache, Jersey Client API for Java, .Net framework and all popular micro-
browsers for mobile devices are currently supported without restriction. For cross-domain browser requests user
may implement standard techniques such as embedded I-Frame or use the engine-supplied HTTP client utility
classes, downloaded to the browser automatically as server-side includes.

Note

It should be noted that often, a better alternative to cumbersome browser-based mash-ups or server-centric
UI frameworks such as Struts is use of the Service Application Engine™ as a Web Intermediary.

The service engine provides a single, secure entry point into a system, yet allows users to aggregate data from
many sources using Service Calls, Event Processing or Application Data Spaces™. Resources may be
accessed in a location-transparent manner without concern for cross-domain browser issues. Visual aspects
of a Web application can be truly separated from back-end processing without sacrificing functionality or
control.

Security Considerations

The service engine implements standard HTTP Security by allowing developers to provide user and credential
information in the HTTP header of client requests. Often this is an acceptable solution as in most cases only the
login credentials need to be protected. Acquiring a costly SSL server certificate from a certificate authority and
writing the web app to ensure it only uses it for authentication is overkill. Even with an SSL infrastructure in place,
many web applications store usernames and passwords in a database in clear text. In such a case, an attacker
compromising the server has access to all user authentication credentials.

REST –based interfaces are particularly vulnerable because by default a REST application is stateless and does not
handle session-based authentication. In contrast to default behaviors the Service Application Engine™ provides a
flexible and extensible security framework that can protect a system’s access points and provide an independent
authorization layer for back-end resources such as Files, Databases and Web Services.

Authentication Framework

The application fabric provides a comprehensive framework for handling security and user authentication that
focuses on user credential protection and active policy enforcement. Authentication extends to the HTTP protocol
as well as StreamScape TLP, XMPP and the XMPP –over –HTTP variants supported by the service engine.

 Using the REST API

HTTP and REST Application Programming Interface 14

Credential information is never stored as open text. Each node has a local copy of the security database which
stores credential information in encrypted format. Security information of a node is strictly overlaid when the
node joins an active SYSPLEX, preventing injection of users and roles into an existing system. Changes in security
status are replicated across the SYSPLEX and have a CASCADE effect on permissions and security context. Users
are mapped to GROUPS and REALMS independently. Group entities are simply a way to organize users.

REALM authority applies to base URI or URL used to protect Fabric Services or specific resources. For example by
including the base URI http://< Host >[:< Port >]/exchange/ in a REALM mapping of an HTTP acceptor
and then excluding specific users and groups from the authorization list it is possible to disable access to the
fabric’s Event Dispatcher for such users.

All participant components in a SYSPLEX have a so-called Security Context. This is a set of security credentials that
identify a component to the application engine. The security context is particularly meaningful for clients that
connect to the application engine. A client context is associated with its security context that is checked for
permissions whenever engine resources are accessed. This is especially important when clients attempt to access
services or elements in a data space. Internally the client context typically creates a resource Accessor for every
resource it intends to use. Accessors are light-weight fabric constructs (similar to semaphores or session objects)
that manage access to fabric resources; they work together with the security context to enforce security policies.
In general, the following diagram illustrates all relevant components of an HTTP client interaction with the engine:

When an HTTP Client establishes a connection for the first time it passes security information in the HTTP header
and establishes a Client Context in the application engine. The client’s credentials are then verified by the engine’s
Authentication Module. If the client passes authentication a security context is established and a fully functional
Client Context is then created. The Web client is passed back a valid response with HTTP header information that
must be then re-used by the client application in order to maintain a virtual HTTP session. Listing components in
the engine will display the names and types of client participants.

REST-DemoNode>list components

 Type Name Description Model User

.. ------------ --------------------- --------------- ------------- .. -----

 DemoService Default Service

.. Client_TLP Client3_REST-DemoNode TLP Connection Local Client .. Admin

 TSPACE RESTful Table Space Dataspace

.. Client_REST Client1_REST-DemoNode REST Connection Local Client .. Admin

 FSPACE RestFS File Space Dataspace

.. Client_SLANG Client1_REST-DemoNode TLP Connection Remote Client .. Admin

An HTTP client context is lease –based, meaning that it will exist for some time and will eventually be closed by the
engine if no further activity on that connection occurs. This is done to optimize resource use and prevent certain
intrusion attacks on the Web Server. Each time the client sends a REST request to the engine the HTTP header
information is compared to that of the exisitng client context for the user. If there is a match, the lease is extended
and no further authentication occurs. If thre is no match a new context is created and the user is authenticated

 Using the REST API

HTTP and REST Application Programming Interface 15

again. To prevent denial of service and flood attacks, the number of concurrent connections may be limited by
Acceptor configuration. Enabling INFO trace for com.streamscape.sef.* will show the following in the error
log, confirming the described behavior:

.. Component 'REST-DemoNode://Client_SLANG.Client1_REST-DemoNode' added.

.. Remote client 'REST-DemoNode://Client_SLANG.Client1_REST-DemoNode'

 [127.0.0.1:59833] connected.

.. Component 'REST-DemoNode://Client_REST.Client1_REST-DemoNode' removed.

.. Fabric connection 'Client_REST.Client1_REST-DemoNode' closed.

It shoud be noted that a Client Context is established regardless of the HTTP connection mode that is used.
Context objects represent active user sessions and may be used to view and analyze client interactions with the
Web Server and its requested resources, allowing developers to track mouse clicks, and other HTTP requests.

The Authentication Module is a pluggable component that handles client identity validation. It is configured in the
engine’s Deployment Descriptor. Developers may create their own modules to extend the application fabric’s
security model as needed. The default module validates users against the engine’s security database. It has been
tested to support hundreds of thousands of users without significant performance impact. Users developing their
own autentication modules should consider performance as part of their design. See general documentation for
more information on authentication Module development and security.

Basic Authentication

In the context of an HTTP interface, basic access authentication is a method for a Web Browser or other client
program to provide credentials such as user name and password to the Web Server when making a request. Basic
authentication does not make attempts to transmit credentials in a secure fashion. It implies that credentials are
included with every HTTP request.

Before a request is transmitted, the user name is appended with a colon and with a password. The resulting string
is then encoded using a Base64 algorithm. For example, given the user name Bob and password MySecret, the
string Bob:MySecret is Base64 encoded, resulting in a string similar to QWxhZGRpbjpvcGVuIHNlc2FtZQ==. The
Base64-encoded string is transmitted in the HTTP header and decoded by the server, resulting in a colon-separated
user name and password string. The service engine then performs standard authentication for a Client Context.

While encoding the user name and password with the Base64 algorithm makes them unreadable to the unaided
eye, they are trivially decoded by software and as such, are susceptible to traffic sniffers and Man-in-the-Middle
attacks. Confidentiality is not the intent of the encoding step. HTTP in general does not provide such guarantees
(see HTTPS). Rather, the intent is to encode characters not compatible with HTTP that may be in the user name or
password into those that are HTTP-compatible.

Basic authentication does implement a challenge-response exchange in Web Browser applications. If credentials
are not specified, the service engine will reply with a typical HTTP 401 Unauthorized response to the sender.
This will allow the client application to automatically retry the transmission once credentials have been supplied.
Most browsers react by displaying a pop-up window for entering User and Password credentials and automatically
resubmitting the request. Basic authentication is useful for testing and in situations where extra-net security is not
a prevailing issue.

To enable BASIC Authentication a runtime acceptor’s authenticationType parameter must be set to BASIC.
The samples directory provides additional examples of JavaScript –based basic authentication.

http://en.wikipedia.org/wiki/Base64
http://en.wikipedia.org/wiki/HTTP_header
http://en.wikipedia.org/wiki/HTTPS

 Using the REST API

HTTP and REST Application Programming Interface 16

Java Example:

import com.streamscape.lib.http.*;

..

public static final int DEFAULT_TIMEOUT = 30000;

public static final String SERVICE_REALM = "Service";

..

HTTPConnection connection = null;

HTTPResponse response = null;

String requestURL = null;

..

// Build a request URL here

..

connection = new HTTPConnection("localhost", 8099);

connection.setTimeout(DEFAULT_TIMEOUT);

connection.setAllowUserInteraction(false);

connection.addBasicAuthorization(SERVICE_REALM, "Admin", "admin");

..

response = httpConnection.Get(requestURL);

In the sample code above a StreamScape –supplied HTTP client is used to construct the URL for issuing an HTTP
request. Base64 encoding occurs implicitly. Note the use of a REALM identifier to specify the security domain.

Digest Authentication

HTTP digest authentication is a little-known standard built into all major web servers and web browsers. With it,
login credentials are not directly transmitted across the network, nor are they stored in the engine as plain text.
There is no need to purchase an expensive SSL host certificate each year, nor worry about CPU load due to
cryptographic processing. Also, the service engine performs authentication, removing the need to develop such
code in the web application itself. An application only has to verify that authentication has taken place.

Digest authentication is not the same as Basic Authentication. Web servers and browsers have always supported
basic authentication and many servers (including the service engine) implicitly support digest authentication as
well. Digest authentication looks similar from the user’s perspective. The browser pops up a dialog box asking for
User and Password credentials. However, under the hood the protocol uses hashes instead of encoded text.

How Digest Authentication Works

Digest authentication is a challenge-response mechanism that performs implicit negotiation of credentials:

 A browser or client application sends an HTTP request (e.g. a GET) to the service engine

 The engine sees the URL being accessed has been configured to use Digest Authentication and replies
with a 401 Authentication Required status plus a nonce, which is a unique hash of several data
items, one of which is a secret key known only to the engine. Validation and nonce generation are
handled by the Authentication Module and may be customized by a user –defined module.

 The browser pops up a dialog box requesting username and password. A client application may respond
by supplying user credentials. Once the credential information is supplied, an MD5 hash of the username,
password, nonce and URL are computed and the client re-sends the original request along with the hash.

 The service engine then compares that hash with it’s own computation of the same values. If they match,
the original HTTP request is allowed to complete.

Since hashes are used instead of the actual data, an eavesdropper intercepting the communications never sees the
user name and password. Digest authentication is appropriate in situations where secure transmission of user

http://en.wikipedia.org/wiki/Digest_access_authentication
http://en.wikipedia.org/wiki/Basic_authentication_scheme

 Using the REST API

HTTP and REST Application Programming Interface 17

credentials is needed. It is a good, light –weight mechanism for secure authentication that is supported by all
major browsers. Client application change should be fairly transparent as indicated by example below. A variety
of browser forms, Java Script and tool kits such as DigestJ also provide support for digest authentication.

..

connection. addDigestAuthorization (SERVICE_REALM, "Admin", "admin");
..

To enable DIGEST Authentication a runtime acceptor’s authenticationType parameter must be set to DIGEST.
The samples directory provides additional examples of JavaScript –based digest authentication.

Delegated Authorization

The service application engine supports session –level authorization tokens, also referred to as a Delegate or Valet
Key authorization. Delegated authorization is the granting of access to another person or application in order to
perform actions on your behalf.

By way of example, when you drive your car to a classy hotel, they may offer valet parking. You then authorize the
valet attendant to drive your car by handing them the key in order to let them perform actions on your behalf.
Delegated authorization works the same way. A user grants access to application fabric resources in order to have
other applications perform actions on their behalf by handing them a Session Token, also referred to as a
Valet Key. Such applications can only perform the authorized actions allowed by the associate Security Context.

The diagram above illustrates the relationship between a Delegate Authority, a Valet Key (session token) and the
client application that is performing a service invocation. An authorization delegate may be an application that self
–authorizes, or may be a different node that assumes the role of an Identity Manager. The application engine
stores user profiles in a vCARD –compliant structure that may be used to identify and authenticate the delegate.
In the current version application fabric clients may only authenticate against the application engine, although the
engine may further authenticate against any 3

rd
 party application. The delegated authorization model is used by

REST –based applications, allowing them to use a single authorization technology across hundreds of APIs on the
Web. It is compatible with similar Web standards such as Open ID and the OAuth specification.

Delegate authorization is enabled on a runtime acceptor by setting the sessionAuthentication parameter to
TRUE. It may be used in combination with BASIC or DIGEST authentication. Once authorization is enabled clients
may authenticate by using the http://<host:port>/security/authorize URL. The engine returns a Valet
Key that can then be passed as part of the HTTP header using the x-session-token property. Session tokens

 Using the REST API

HTTP and REST Application Programming Interface 18

allow authorized clients to access protected resources using permissions associated with the delegate Security
Context. Sessions can be configured to expire using the sessionTimeout parameter in the HTTP acceptor,
providing additional security. Session timeout follows a leased resource model. Each time a session is used its
timeout lease is extended. Session tokens may also be invalidated immediately by using the
http://<host:port>/security/unauthorize URL.

SSL Encryption

Secure Sockets Layer (SSL) is the only choice to protect web data in transit and simultaneously verify the identity of
the server. However, SSL is often used when the only data that must be protected are authentication credentials
such as user name and password, leading to excessive processing overhead and CPU consumption. Encryption
routines of SSL seriously impact a web server when under load.

SSL is not enabled by default in the service engine or the HTTP client, however both may be configured to use a
specific SSL provider to affect secure end-to-end communications over HTTP. Please contact StreamScape support
at support@streamscape.com for additional information.

mailto:support@streamscape.com

RESTful API Guide

HTTP and REST Application Programming Interface 19

RESTful API Guide

The following section describes all supported interface calls and provides syntax and examples for accessing the
application fabric’s resources using REST –based clients. Where appropriate both XML and JSON format are used.
Standard URL syntax separates the base URI from the query string with the ? symbol. Query parameters are
presented as a subject and modifier verbs separated by the & symbol. For syntax clarity modifier verbs are
presented as &< verb >, for example &data or &event. Default values are presented underlined.

Authorize

http://< Host >[:< Port >]/security/authorize

An authorize request allows applications or external delegate systems to authenticate with the application fabric
and request session tokens that maybe used as Valet Keys by trusted applications. This URL is only valid if the
sessionAuthentication parameter is set to TRUE. The call takes standard authentication credentials that are
passed in as HTTP header elements and may use BASIC or DIGEST authentication to pass credentials to the
acceptor. The following header elements are suggested as a minimum:

 HTTP Header Element Description

 url The URL that an HTTP client is connecting to. Must be /security/authorize.

 type The type of HTTP request. GET and POST are supported.

 timeout The time in milliseconds that a connection waits for a response on.

 username Security principal that may be encoded or encrypted based on authentication model.

 password Security credential. May be encoded or encrypted based on authentication model.

When an authorization request is submitted the application fabric reacts by first checking the acceptor’s
authenticationType parameter. If this is set to BASIC the acceptor will decode the username and password

and attempt an authentication by calling the node’s Authentication Module. If successful, a Client Context is
established and a session token is returned. If the acceptor’s authenticationType parameter is set to DIGEST

a standard challenge/response exchange occurs. The application fabric receives and decrypts the username and
password and attempts authentication.

Note that the Authentication Module is a system extension point. The Default implementation will simply
validate credentials against the fabric’s security database. However users may create their own implementations
of Authentication Module and pass additional information in the HTTP header such as those required by identity
managers like OAuth and Open ID. This information can then be verified against the user’s profile that is stored in
the security database and follows the general vCARD format as outlined in IETF RCF 6350. As such, custom
modules may verify identity as part of general authentication, before authorizing an Valet Key.

A failed authentication will return 401, whereas if the feature is not enabled a 404 will be returned indicating that
the URL is not valid.

 RESTful API Guide

HTTP and REST Application Programming Interface 20

Examples:

The following illustrates an authorization request using jQuery:

<script type="text/javascript" src="jquery/jquery-1.7.2.min.js"></script>

token:<input type="text" name="x-session-token" id="x-session-

token" readonly="readonly" disabled="true" width="100"/>

..

<script>

$("#Authorize").click(function() {
 $.ajax({
 url : "/security/authorize",
 type : "GET",
 timeout : "60000",
 username : "http",
 password : "http",
 success: function(data) {
 $("#x-session-token").val(data);
 $("#x-session-token").attr("disabled", false);
 },
 statusCode : {
 401: function() {
 alert("Authentication failed.");
 },
 404: function() {
 alert("Security authentication disabled.");
 }
 },
 error : function(XMLHttpRequest, error) {
 alert("Authorize request failed, status code: " +

XMLHttpRequest.status);
 }
 });
});

</script>

This request returns a session token such as: zQW3454500aaf=. This session token may then be passed into
subsequent HTTP requests thru the use of the x-session-token element in the HTTP header. Session tokens are
potentially temporary and will expire. When this occurs the user will be returned a 401 error and must then re-
authorize.

 RESTful API Guide

HTTP and REST Application Programming Interface 21

Unauthorize

http://< Host >[:< Port >]/security/unauthorize

An unauthorize request invalidates a specific session token and removes the Client Context associated with the
token from the fabric runtime. To issue the request a client must specify the x-session-token element in the
HTTP header. The operation returns a 401 if the session token is not valid or expired. A 404 error is returned if
security authentication is disabled.

 HTTP Header Element Description

 url The URL that an HTTP client is connecting to. Must be /security/authorize.

 type The type of HTTP request. GET and POST are supported.

 timeout The time in milliseconds that a connection waits for a response on.

 x-session-token Session token to be invalidated.

Examples:

The following illustrates how to revoke an authorization request using jQuery:

<script type="text/javascript" src="jquery/jquery-1.7.2.min.js"></script>

token:<input type="text" name="x-session-token" id="x-session-

token" readonly="readonly" disabled="true" width="100"/>

..

<script>

$("#Unauthorize").click(function() {
 $.ajax({
 url : "/security/unauthorize",
 type : "GET",
 timeout : "60000",
 username : "http",
 password : "http",
 headers : {"x-session-token" : $("#x-session-token").val()},
 success: function(data) {
 $("#x-session-token").val("");
 $("#x-session-token").attr("disabled", true);
 },
 statusCode : {
 401: function() {
 alert("Invalid session token.");
 },
 404: function() {
 alert("Security authentication disabled.");
 }
 },
 error : function(XMLHttpRequest, error) {
 alert("Unauthorize request failed, status code: " +

XMLHttpRequest.status);
 }
 });
});

</script>

 RESTful API Guide

HTTP and REST Application Programming Interface 22

Invoke Service

http://< Host>[:< Port >]/service/invoke?service=< Service Name >

 { &eventId=< EventId > | &eventHandler=< Event Handler Name > }

 [&corrleationId=< CorrelationId >]

 [&eventGroup=< Event Group >]

 [&eventKey=< Event Key >]

 [&durable={ true | false }]

 [&eventProperties=< Property1=Value1; ... PropertyN=ValueN >]

 [&requestFormat={ XML | JSON }]

 [&responseFormat={ XML | JSON }]

 {

 &data={ < String Value > | < JSON Object > | < XML Object > } |

 &event={ < JSON Event Object > | < XML Event Object > }

 }

A service invoke allows REST clients to directly call methods of a specified Application Fabric Service by referencing
the Event Id or Event Handler associated with the service method. The base resource identifier (URI) followed by
the subject service uniquely identifies a REST resource and host. The complete URL specifies a reference to the
service method and additional options that allow users to specify identity, format and content of the request.

Note

All service calls may be invoked using GET or POST. The REST Service API does not currently support a
specific mapping to standard HTTP protocol verbs such as GET, PUT, POST or DELETE. Each service
class may expose several methods and therefore does not map directly to the HTTP verbs. Future versions
are intended to present mappings that allow users to overload method invocations to elicit specific behavior.

Invoking a service follows the standard Web Server communication pattern. Clients may choose how they access a
service based on the type of Semantic Type that a service event handler supports. Methods that are implemented
to accept Structured Data Objects (classes) will require users to declare the &eventHandler verb in order to
identify the event handler that accepts the object. When this option is specified the user must also declare a
&data verb followed by an object representation in XML, JSON or STRING format.

Declaring an &eventHandler verb may also be used with methods that accept Event Datagram objects. Various
verb combinations may be used to provide maximum flexibility for application developers, allowing them to supply
representations as data objects, datagram objects or dynamically construct Event Datagrams on the fly.

The URL syntax allows users to declare request formats as JSON or XML. If neither option is specified the request
representation defaults to STRING. A response may also be declared as JSON or XML and defaults to XML. When
REST requests are specified using the &data verb users will need to specify object representations using the
appropriate format based on their semantic type. When requests are specified using the &event verb the user
must supply a complete, well-formed Event Datagram object including header information using XML or JSON.

Note that for JSON objects the primitive types are limited to STRING and NUMERIC as dictated by Java Script and
the ECMA standards. As such text strings do not require explicit type declaration unless presented as part of a
datagram representation.
The following verbs are supported by the Service Invoke operation:

 URL Element Description

 Host HTTP host name of the node that a client is connecting to.

 Port HTTP port of the node (80 by default).

 Service Name Name of the service running on this node in <Type>.<Instance> format.

 RESTful API Guide

HTTP and REST Application Programming Interface 23

 eventId

EventId of the event to be passed to the service. Only valid if service event handler accepts
an Event Datagram as a parameter. Otherwise an exception is raised. If this option is set
and an event option is provided the properties of the event object override any URL

specified properties. This option is mutually exclusive to the eventHandler option.

 durable

If an event is being dynamically created (by specifying &eventId and &data elements),
this option specifies whether or not the new event is to be durable or not. Durable events
are cached if an Event Cache is defined for this Event Id.

 correlationId
If an event is being dynamically created (by specifying &eventId and &data properties),
sets the Correlation Id of the event.

 eventGroup
If an event is being dynamically created (by specifying &eventId and &data properties),
sets the EventGroup for the event. This property is part of Event Identity Management.

 eventKey
If an event is being dynamically created (by specifying &eventId and &data properties),
specifies the EventKey for the event. This property is part of Event Identity Management

 property
If an event is being dynamically created (by specifying &eventId and &data properties),
specifies one or more user defined properties for the event.

 eventHandler

Name of the Event Handler to invoke. This option is mutually exclusive to the &eventId

option and valid for all cases, allowing users to specify the handler regardless of the type
of object it accepts. The type is specified by either &data or &event content.

 event

Specifies an event object representation in XML or JSON format to be passed to the
service. If &event is specified a service event handler must accept an Event Datagram as
parameter, else an exception is raised. If an &eventId is specified in the URL, the object
&eventId takes precedence. If this option is set, adding &data raises an exception.

 data

Specifies a data object representation in String, XML or JSON format to be passed to the
service event handler. The Semantic Type of the data element must match that of the
event handler, otherwise an exception is raised.

 requestFormat

Specifies whether the format of a request is XML or JSON. This option controls how the
engine interprets the &data or &event parameters being passed to the service. If this
option is omitted the &data contents are interpreted as a STRING.

 responseFormat

Specifies whether the format of a response is XML or JSON. This option controls how the
engine returns the representation resulting object from a services execution. This includes
exceptions or other status messages returned by the service.

Examples:

The following illustrates invoking a service called Process.ListRequest using a JSON object:

http://streamscape.com:8099/service/invoke?service=Process.ListRequest

 &requestFormat=json&eventHandler=processList

 &data={"SemanticType":"ProcessListRequest",

 "processType":"TestProcess","processNumber":"3"}

A simple ‘hello world’ service that accepts and returns a STRING may be invoked as:

http://localhost:8055/service/invoke?service=DemoService.Default&responseFormat=json

&eventHandler=helloWorld&data=Jimmy

and results in the following representation response when the response format is set to JSON:

 RESTful API Guide

HTTP and REST Application Programming Interface 24

{ "data" : "Hello, Jimmy" }

and the following representation response if set to XML:

<data SemanticType="string">Hello, Jimmy</data>

Note that syntax does not require STRING data to be presented as XML or JSON.

The following example invokes a service that accepts an event datagram. The response type is also specified and
the resulting EVENT is marked durable so that it may be cached by the application fabric if there is an event cache
defined. A complete set of event properties may be defined as part of the payload. See the documentation of the
Service Engine regarding what properties may be set and their possible values. The URL is formatted for legibility:

http://localhost/service/invoke?service=EventService.Sample&requestFormat=xml

 &responseFormat=xml

 &eventId=event.DemoService.request

 &correlationId=Test0001

 &durable=true

 &event=

<?xml version=’1.0’?>

 <DataEvent>

 <serialVersionUID>9969000000302071</serialVersionUID>

 <timeStamp>0</timeStamp>

 <eventExpiration>0</eventExpiration>

 <dataProtected>Rw==</dataProtected>

 <acl>

 <ACL>GyUs</ACL>

 </acl>

 <coalesced>false</coalesced>

 <data SemanticType="string">Sample Data</data>

 </DataEvent>

The service is similar to our hello world example and returns the following representation response:

<?xml version=’1.0’?>

 <Response>

 <data SemanticType="string">Sample Data</data>

 </ Response >

Note that when specifying XML representations the XML prolog <?xml version=’1.0’?> is optional. For

example a data object may be specified as <data SemanticType="string">Hello, Jimmy</data>.

Responses always return well –formed XML however and will always contain a prolog.

 RESTful API Guide

HTTP and REST Application Programming Interface 25

Raise Event

http://< Host>[:< Port >]/exchange/raiseEvent?eventId=< Event Id >

 [&corrleationId=< Correlation Id >]

 [&eventGroup=< Event Group >]

 [&eventKey=< Event Key >]

 [&durable={ true | false }]

 [&eventProperties=< Property1=Value1; ... PropertyN=ValueN >]

 [&requestFormat={ XML | JSON }]

 [&responseFormat={ XML | JSON }]

 {

 &data={ < String Value > | < JSON Object > | < XML Object > } |

 &event={ < JSON Event Object > | < XML Event Object > }

 }

The raise event allows REST clients to raise events within the application fabric the same way that standard TLP
clients and services may do. A full set of event types is supported (ie. XMLEvent, DataEvent, BytesEvent). The
URL syntax allows users to specify event formats as JSON or XML. If neither option is specified the event
representation defaults to STRING and the event is assumed to be a TextEvent. A prototype mismatch will raise an
exception. The raise event operation is fire-and-forget and returns a response indicating operation success.

The following verbs are supported by the Raise Event operation:

 URL Element Description

 Host HTTP host name of the node that a client is connecting to.

 Port HTTP port of the node (80 by default).

 eventId
Event Id of the event to be raised. An &eventId is mandatory and will always take
precedence over the properties of the event object.

 durable

If an event is being dynamically created (by specifying &eventId and &data elements),
this option specifies whether or not the new event is to be durable or not. Durable events
are cached if an Event Cache is defined for this Event Id.

 correlationId
If an event is being dynamically created (by specifying &eventId and &data properties),
sets the Correlation Id of the event.

 eventGroup
If an event is being dynamically created (by specifying &eventId and &data properties),
sets the EventGroup for an event. The property is part of Event Identity Management.

 eventKey
If an event is being dynamically created (by specifying &eventId and &data properties),
sets the EventKey for the event. This property is part of Event Identity Management

 property
If an event is being dynamically created (by specifying &eventId and &data properties),
specifies one or more user defined properties for the event.

 event
Specifies an event object representation as XML or JSON. The eventId specified in the
URL takes precedence. If this option is set, adding a &data option raises an exception.

 data

Specifies a Data Event representation in STRING, XML or JSON format. Semantic Type of
data must match that of the event prototype, else an exception is raised. When specified
the event is implicitly created as a DataEvent.

 requestFormat

Specifies whether the format of an event is XML or JSON. This option controls how the
engine interprets the &data or &event parameters of the raise event. If this option is
omitted the &data contents are interpreted as a STRING.

 responseFormat
Specifies whether the format of a response is XML or JSON. This option controls how the
engine returns the representation of a raise event confirmation or an exception.

 RESTful API Guide

HTTP and REST Application Programming Interface 26

A raise event response may be declared as JSON or XML and defaults to XML. When REST events are specified using
the &data verb users will need to specify object representations using the appropriate format based on their
semantic type. If a semantic type does not match the event prototype an exception response is returned. Events
described using the &data verb must be of DataEvent type or an exception response is returned. When events are
specified using the &event verb the user must supply a complete, well-formed Event Datagram object including
header information using XML or JSON.

Note that when specifying XML representations the XML prolog <?xml version=’1.0’?> is optional. For
example data may be specified as <data SemanticType="string">Hello, Jimmy</data> without the
prolog when compared to a well-formed XML document such as:

<?xml version=’1.0’?>
 <data SemanticType="string">

 Hello, Jimmy

 </data>

Examples:

An example of a Text Event being raised using JSON representation:

http://streamscape.com/exchange/raiseEvent?eventId=event.sample.Text

 &correlationId=10583

 &eventKey=Audit Text

 &requestFormat=json

 &data={"SemanticType":"Text", "text":"Hello world."}

An acknowledgement response is returned as XML:

<?xml version=’1.0’?>

 <Void/>

Here is another example that raises a notification event with user-defined properties. Note that REST interactions
with the dispatcher are the same as any other fabric client. Events that are raised must have a valid prototype
defined. It is expected in the example below that a prototype for event.notification must exist and must also
contain the properties severity and date:

http://streamscape.com/exchange/raiseEvent?eventId=event.notification

 &eventProperties=severity=Critical;date=04 Jan 2011 00:57:13.274

 &durable=true

 &requestFormat=xml

 &data=<data SemanticType="Text">System is active!</data>

 RESTful API Guide

HTTP and REST Application Programming Interface 27

Raise Request

http://< Host>[:< Port >]/exchange/raiseRequest?eventId=< Event Id >

 [&corrleationId=< Correlation Id >]

 [&eventGroup=< Event Group >]

 [&eventKey=< Event Key >]

 [&durable={ true | false }]

 [&eventProperties=< Property1=Value1; ... PropertyN=ValueN >]

 [&requestFormat={ XML | JSON }]

 [&responseFormat={ XML | JSON }]

 [&replyTo=< Event Id >]

 [&timeout=< Milliseconds >]

 {

 &data={ < String Value > | < JSON Object > | < XML Object > } |

 &event={ < JSON Event Object > | < XML Event Object > }

 }

The raise request allows REST clients to raise request events within the application fabric the same way that
standard TLP clients, services and triggers may do. A full set of event types is supported (ie. XMLEvent,
DataEvent, BytesEvent). A raise request operation is a blocking call. The client application blocks waiting for
the service engine to respond with a proper HTTP reply. However the actual retrieval and building of a response
object may be done in a variety of ways driven by the service logic of the application engine.

Requests are raised in an asynchronous fashion, as events with a specific event id. As such participant components
that process request events may exist anywhere within the application fabric and handle incoming requests in a
location-transparent fashion. To match requests to responses the request should supply a &replyTo value which
is an event id that is used to identify the response object. When a REST request event is raised the Client Context
proxies the request and dynamically creates a listener that waits for replies using the event id specified by the
&replyTo verb.

The URL syntax allows users to specify request event formats as JSON or XML. If neither option is specified the
event representation defaults to STRING and the event is assumed to be a TextEvent. A prototype mismatch will
raise an exception.

Replies are any events that are raised using the &replyTo event id. As such any service, client application or data
collection may respond to requests. The engine makes use of the so called edge-format processing technique,
wherein all data objects used for communications are semantic types based on Java objects; however they can be
presented as XML or JSON to client applications (at the edge). For REST –based requests the response format is
specified using &responseFormat.

A raise request response may be declared as JSON or XML and defaults to XML. When REST events are specified
using the &data verb users will need to specify object representations using the appropriate format based on their
semantic type. If a semantic type does not match the event prototype an exception response is returned. Events
described using the &data verb must be of DataEvent type or an exception response is returned. When events are
specified using the &event verb the user must supply a complete, well-formed Event Datagram object including
header information using XML or JSON.

Note that when specifying XML representations the XML prolog <?xml version=’1.0’?> is optional. For

example data may be specified as <data SemanticType="string">Hello, Jimmy</data> without the
prolog. This is true for all XML representations.

Because requests are blocking operations and participants may not always reply to requests properly (especially
during testing), the raise request operation allows users to specify a request timeout by using the &timeout verb.
Timeout is specified in milliseconds. A request that times out returns an HTTPClientException indicating that
the raising of a request failed. It should be noted that the timeout is superseded by HTTP acceptor settings such
as keepAliveTimeout, sessionTimeout and clientTimeout which will cause long running, blocking requests
to be aborted due to inactivity.

 RESTful API Guide

HTTP and REST Application Programming Interface 28

The following verbs are supported by the Raise Request operation:

 URL Element Description

 Host HTTP host name of the node that a client is connecting to.

 Port HTTP port of the node (80 by default).

 eventId
Event Id of the request event to be raised. An &eventId is mandatory and will always
take precedence over the properties of an event object.

 durable

If an event is being dynamically created (by specifying &eventId and &data elements),
this option specifies whether or not the new event is to be durable or not. Durable events
are cached if an Event Cache is defined for this Event Id.

 correlationId
If an event is being dynamically created (by specifying &eventId and &data properties),
sets the Correlation Id of the event.

 eventGroup
If an event is being dynamically created (by specifying &eventId and &data properties),
sets the EventGroup for an event. The property is part of Event Identity Management.

 eventKey
If an event is being dynamically created (by specifying &eventId and &data properties),
sets the EventKey for the event. This property is part of Event Identity Management

 property
If an event is being dynamically created (by specifying &eventId and &data properties),
specifies one or more user defined properties for the event.

 event
Specifies an event object representation as XML or JSON. The eventId specified in the
URL takes precedence. If this option is set, adding a &data option raises an exception.

 data

Specifies a Data Event representation in STRING, XML or JSON format. Semantic Type of
data must match that of the event prototype, else an exception is raised. When specified
the event is implicitly created as a DataEvent.

 requestFormat

Specifies whether the format of an event is XML or JSON. This option controls how the
engine interprets the &data or &event parameters of the raise event. If this option is
omitted the &data contents are interpreted as a STRING.

 responseFormat
Specifies whether the format of a response is XML or JSON. This option controls how the
engine returns the representation of a raise request response or an exception.

 replyTo
Specifies the eventId of the response. If an event supplied as &event representation
contains a replyTo value it takes precedence.

 timeout

Specifies how long a request remains outstanding before it is aborted by the framework.
The timeout is specified in milliseconds. A setting of 0 indicates no timeout. Note that
this setting may be superseded by HTTP acceptor settings.

Examples:

An example of a request URL being constructed as an implicit DataEvent using JSON representation:

String request = "{\"SemanticType\":\"Employee\",\"name\":\"James Franco\",

 \"empId\":101223,\"action\":\"NEW_HIRE\",\"dept\":\"SYSOPS\",

 \"timestampValue\":{\"SemanticType\":\"sql-timestamp\",

 \"millis\":1338415300439}}";

String URL = "/exchange/raiseRequest?responseFormat=json&requestFormat=json

 &eventId=event.CRM.Employee&replyTo=event.CRM.reply

 &data=" + request + "&timeout=1000";

 RESTful API Guide

HTTP and REST Application Programming Interface 29

The reply of such a request could be an AcknowledgementEvent and would be matched using the event id
specified by the &replyTo verb:

{

 "SemanticType" : "AcknowledgementEvent",

 "serialVersionUID" : 9969000000302071,

 "eventSource" : "AAAAAQAM",

 "eventId" : " event.CRM.reply",

 "durable" : false,

 "timeStamp" : 1338583100244,

 "eventExpiration" : 0,

 "dataProtected" : "Rw\u003d\u003d",

 "acl" :

 {

 "ACL" : "GyUs"

 },

 "coalesced" : true,

 "correlationEventTimeStamp" : 1338583100244,

 "correlationEventExpiration" : 0,

 "correlationEventSource" : "AAAAAQAO",

 "correlationEventId" : "event.CRM.Employee",

 "onAcknowledgeAction" :

 {

 "SemanticType" : "AcknowledgeAction",

 "value" : "ACKNOWLEDGE"

 }

}

When a timeout or other error occurs a complete ExceptionEvent is returned including a stack trace. For example,
here is an abridged XML representation:

<?xml version="1.0"?>

<HTTPClientException>

 <detailMessage>Raising of request 'event.http.test'

failed.</detailMessage>

 <cause SemanticType="ServletException">

 <detailMessage>Raising of request 'event.http.test'

failed.</detailMessage>

 <stackTrace>

 <trace>com.streamscape.sef.network.http.server.servlet.ExchangeServlet.proces

sRaiseOperation(ExchangeServlet.java:454)</trace>

..

<rootCause SemanticType="FabricEventSourceException">

 <detailMessage>Raising of request 'event.http.test'

failed.</detailMessage>

 <cause SemanticType="FabricEventSourceException">

 <detailMessage>Reply timeout expired.</detailMessage>

 <stackTrace>

..

 </stackTrace>

 <serialVersionUID>9969000000302071</serialVersionUID>

 <eventId>exception.fabric.EventSource</eventId>

 <errPrefix>SEF</errPrefix>

 <errorCode>6034</errorCode>

 <severity>GENERIC</severity>

 <durable>false</durable>

 <timeStamp>0</timeStamp>

 <coalesced>false</coalesced>

 </cause>

 RESTful API Guide

HTTP and REST Application Programming Interface 30

Receive Event

http://< Host>[:< Port >]/exchange/receiveEvent?eventId=< Event Id >

 [&responseFormat={ XML | JSON }]

 [&timeout=< Milliseconds >]

The receive event operation allows REST clients to receive events from an event stream within the application
fabric the same way that standard TLP clients, services and triggers may do. A full set of event types is supported
(ie. XMLEvent, DataEvent, BytesEvent). A receive event operation is a blocking call. The client application
blocks waiting for the service engine to respond with a proper HTTP reply.

A receive operation retrieves the most recent available event in the stream. Normally this type of stream sampling
does not return an event because the likelihood of an event being available in the dispatcher at the exact moment
a receive occurs is unlikely. However specifying a &timeout allows the receive to wait on arriving events. For the
duration of a receive operation REST –based clients block. Browser applications may use standard AJAX
programming techniques such as hidden i-frame, tools such as jQuery or application fabric Java Script utilities that
wrap i-frame implementations to affect asynchronous receive operations.

Alternatively, events that have an event cache declared and raised as durable will be buffered by the event fabric
and delivered to a REST –based receiver. Users may control cache depth and set it to buffer a significant amount
of events allowing receivers to continuously poll the event stream without missing any events and preserving the
delivery order.

The URL syntax allows users to specify response event formats as JSON or XML making use of the so called edge-
format processing technique, wherein all data objects used for communications are semantic types based on Java
objects; but may be presented as XML or JSON to client applications (at the edge). Response format is specified
using &responseFormat verb.

Timeout is specified in milliseconds. A receive that times out returns a Null response and not an exception
because strictly speaking a receive operation does not guarantee results and there may not be any events available
in the stream during the operation’s cycle. This is not considered an error.

If a receive operation times out the following is returned as JSON format:

{ "SemanticType" : "Null" }

For XML format the following is returned:

<?xml version="1.0"?>

 <Null/>

It should be noted that the timeout is superseded by HTTP acceptor settings such as keepAliveTimeout,
sessionTimeout and clientTimeout which will cause long running, blocking requests to be aborted due to
inactivity. Abortive behavior may result in exceptions being returned to the HTTP client.

Note that a receive event operation must be called with a timeout value and the operation always blocks for some
period of time. Small timeout settings maybe combined with event cache to facilitate asynchronous event
processing behavior using RESTful client interactions.

 RESTful API Guide

HTTP and REST Application Programming Interface 31

The following verbs are supported by the Receive Event operation:

 URL Element Description

 Host HTTP host name of the node that a client is connecting to.

 Port HTTP port of the node (80 by default).

 eventId Event Id of the event to be received.

 responseFormat
Specifies whether the format of a response is XML or JSON. This option controls how the
engine returns the representation of a receive event or an exception.

 timeout

Specifies how long a request remains outstanding before it is aborted by the framework.
The timeout is specified in milliseconds. A setting of 0 indicates no timeout. Note that
this setting may be superseded by HTTP acceptor settings.

Examples:

An example of a request URL being constructed for receiving an event using JSON representation:

String URL = "/exchange/receiveEvent?responseFormat=json

 &eventId=event.http.test

 &timeout=5000";

The result of this request may be:

{

 "SemanticType" : "DataEvent",

 "serialVersionUID" : 9969000000302071,

 "eventSource" : "AAAAAQAM",

 "eventId" : "event.http.test",

 "durable" : false,

 "timeStamp" : 1338584733227,

 "eventExpiration" : 0,

 "dataProtected" : "Rw\u003d\u003d",

 "acl" :

 {

 "ACL" : "GyUs"

 },

 "coalesced" : true,

 "data" :

 {

 "SemanticType" : "SimpleHttpObject",

 "stringValue" : "Test Receive Operation",

 "longValue" : 654321,

 "timestampValue" :

 {

 "SemanticType" : "sql-timestamp",

 "millis" : 1338584732727

 }

 }

}

 RESTful API Guide

HTTP and REST Application Programming Interface 32

Receive Event with NoWait

http://< Host>[:< Port >]/exchange/receiveEventNoWait?eventId=< Event Id >

 [&responseFormat={ XML | JSON }]

A receive event with no wait operation performs the same operation as a receive event. The main difference is
that this version of the call returns immediately without waiting on events in the stream. It is a non-blocking call.
As such, this version of the call may only function properly with events that are cached and raised as durable. It is
equivalent to the standard TLP operation of with the same name. A full set of event types is supported (ie.
XMLEvent, DataEvent, BytesEvent).

If a no wait operation does not return an event it returns a Null response. Here is a JSON format example:

{ "SemanticType" : "Null" }

For XML format the following is returned:

<?xml version="1.0"?>

 <Null/>

The following verbs are supported by the Receive Event NoWait operation:

 URL Element Description

 Host HTTP host name of the node that a client is connecting to.

 Port HTTP port of the node (80 by default).

 eventId Event Id of the event to be received.

 responseFormat
Specifies whether the format of a response is XML or JSON. This option controls how the
engine returns the representation of a response or an exception.

Examples:

An example of a request URL being constructed for receiving an event using JSON representation:

String URL = "/exchange/receiveEvent?responseFormat=json&eventId=event.http.test";

Querying Service Configuration

HTTP and REST Application Programming Interface 33

Querying Service Configuration

The following section describes all supported interface URLs for browsing service configurations. Results are
presented as HTML, XML or JSON format allowing users to view fabric service configurations (SCO) or obtain
representations for service access objects and event handlers. Query requests only support the GET HTTP verb.

Get Service List

http://< Host>[:< Port >]/sor/service/list

A service list is part of the Semantic Object Reference interface that allows users to work with service definitions.
The request returns a list of service that are deployed in a given application fabric node as HTML.

The following elements are supported by the Service List operation:

 URL Element Description

 Host HTTP host name of the node that a client is connecting to.

 Port HTTP port of the node (80 by default).

Examples:

An example of a Service List URL:

http://localhost:5099/sor/service/list

Get Service Reference

http://< Host>[:< Port >]/sor/service/< Service Name >

A service reference is part of the Semantic Object Reference interface that allows users to retrieve a service
reference as an HTML document. The response presents service information and access object reference links as
well as event trigger and event handler definitions, allowing users to browse the service configuration.

The following elements are supported by the Service Reference operation:

 URL Element Description

 Host HTTP host name of the node that a client is connecting to.

 Port HTTP port of the node (80 by default).

 Service Name Name of the service running on this node in <Type>.<Instance> format.

Examples:

An example of a Service Reference URL:

http://localhost:5099/sor/service/DemoService.Default

 Querying Service Configuration

HTTP and REST Application Programming Interface 34

Get Service Actionable Events

http://< Host>[:< Port >]/sor/service/< Service Name >/ActionableEvents/list

An actionable events list is part of the Semantic Object Reference interface that allows users to retrieve a list of
actionable events that may be raised by a service as an HTML document. The response presents a list of event id
that will include exceptions, notifications and service events, allowing users to browse the service configuration.

The following elements are supported by the Service Actionable Event List operation:

 URL Element Description

 Host HTTP host name of the node that a client is connecting to.

 Port HTTP port of the node (80 by default).

 Service Name Name of the service running on this node in <Type>.<Instance> format.

Examples:

An example of a Service Actionable Event List URL:

http://localhost:5099/sor/service/DemoService.Default/ActionableEvents/list

Get Service Event Handlers

http://< Host>[:< Port >]/sor/service/< Service Name >/EventHandlers/list

An event handler list is part of the Semantic Object Reference interface that allows users to retrieve a list of event
handers that expose callable service methods as an HTML document. The response presents a list of event handler
names, allowing users to browse the service configuration. The document includes links to service event handler
definitions and access object representations as well as other relevant event handler information.

The following elements are supported by the Service Event Handler Names List operation:

 URL Element Description

 Host HTTP host name of the node that a client is connecting to.

 Port HTTP port of the node (80 by default).

 Service Name Name of the service running on this node in <Type>.<Instance> format.

Examples:

An example of a Service Event Handler Names List URL:

http://localhost:5099/sor/service/DemoService.Default/EventHandlers/list

 Querying Service Configuration

HTTP and REST Application Programming Interface 35

Get Service Event Handler

http://< Host>[:< Port >]/sor/service/< Service Name >/ EventHandler
 { ?handlerName=< Handler Name > | ?methodName=< Method Name > }

An event handler query is part of the Semantic Object Reference interface that allows users to retrieve the
definition of a particular event hander as an HTML document. The response document includes links to service
access object representations as well as other relevant event handler information. A handler may be located by its
name or by the method name that it maps to in the service configuration.

The following elements are supported by the Service Event Handler query operation:

 URL Element Description

 Host HTTP host name of the node that a client is connecting to.

 Port HTTP port of the node (80 by default).

 Service Name Name of the service running on this node in <Type>.<Instance> format.

 handlerName The name of the event handler to retrieve. This is mutually exclusive to methodName.

 methodName The name of the handler method to retrieve. This is mutually exclusive to handlerName.

Examples:

An example of a Service Event Handler query URL:

http://localhost:5099/sor/service/DemoService.Default/EventHandler

 ?handlerName=getText

This query may return HTML content such as:

Get Service Configuration Object

http://< Host>[:< Port >]/sor/service/< Service Name >/ Configuration
 [?responseFormat={ XML | JSON }]

A service configuration query is part of the Semantic Object Reference interface that allows users to retrieve the
definition of a particular service as an XML or JSON representation. This is in contrast to returning a service
reference which is provided as an HTML document.

The Service Configuration Object contains all information that is pertinent to running a SOA service. This includes
information about the service’s parameters, actionable events, potential exceptions, metrics and alerts that may
be raised by a service as well as service methods that have been exposed as event handlers. A service
configuration query returns the entire object and may be useful for debugging purposes or as a mechanism for
versioning and comparing configurations.

Developers may use the Repository Browser to access and modify node configuration artifacts including Java
Archives, Connection Factories and system configuration objects. This is a separate interface described below.

 Querying Service Configuration

HTTP and REST Application Programming Interface 36

The following elements are supported by the Service Configuration query operation:

 URL Element Description

 Host HTTP host name of the node that a client is connecting to.

 Port HTTP port of the node (80 by default).

 Service Name Name of the service running on this node in <Type>.<Instance> format.

 responseFormat Specifies whether the format of a response is XML or JSON.

Examples:

An example of a Service Configuration query URL:

http://localhost:5099/sor/service/DemoService.Default/Configuration

 ?responseFormat=XML

Get Service Request Object

http://< Host>[:< Port >]/sor/service/< Service Name >/RequestObject

 { ?eventHandler=< Handler Name > | ?eventId=< Event Id > }

 [&responseFormat={ XML | JSON }]

The service request object query allows users to retrieve representations of service request objects as either XML or
JSON format documents. Users can specify a handler name or event id and query its request object; or navigate
the Service Reference HTML to access the request object. Note that by default an SOR reference presents results
in XML format. To generate data objects in JSON format this API call must be used.

The following elements are supported by the Service request Object query operation:

 URL Element Description

 Host HTTP host name of the node that a client is connecting to.

 Port HTTP port of the node (80 by default).

 Service Name Name of the service running on this node in <Type>.<Instance> format.

 eventHandler
Specifies name of the event handler for which the request object is queried. This
parameter is mutually exclusive to &eventId.

 eventId
Specifies the name of the event id for which the request object is queried. This parameter
is mutually exclusive to &eventHandler.

 responseFormat Specifies whether the format of a response is XML or JSON.

Examples:

An example of a Service Request Object query URL:

http://localhost:5099/sor/service/DemoService.Default/RequestObject

 ?eventId=event.DemoService.request

 &responseFormat=XML

 Querying Service Configuration

HTTP and REST Application Programming Interface 37

This may return a result such as the one below, representing the object as a semantic type:

</string>

Note

There is a subtle difference between querying Request Object and Request Event. It is expected that users
developing interfaces and services will want to know what the Object looks like and to obtain its
representation as XML or JSON so that they can construct proper URLs that invoke the service methods.
As such service developers are likely interested in the DATA element being passed to the service. However
all services are invoked internally thru raising of events. So every service call has an implicit Event that is
used to call it and an Event that is returned as result. To get access to the complete Event users should use
the requestEvent query described below.

Get Service Response Object

http://< Host>[:< Port >]/sor/service/< Service Name >/ResponseObject

 { ?eventHandler=< Handler Name > | ?eventId=< Event Id > }

 [&responseFormat={ XML | JSON }]

The service response object query allows users to retrieve representations of service response objects as either XML

or JSON format documents. Users can specify a handler name or event id and query its response object; or
navigate the Service Reference HTML to access the request object. Note that by default an SOR reference presents
results in XML format. To generate data objects in JSON format this API call must be used.

The following elements are supported by the Service Response Object query operation:

 URL Element Description

 Host HTTP host name of the node that a client is connecting to.

 Port HTTP port of the node (80 by default).

 Service Name Name of the service running on this node in <Type>.<Instance> format.

 eventHandler
Specifies name of the event handler for which the request object is queried. This
parameter is mutually exclusive to &eventId.

 eventId
Specifies the name of the event id for which the request object is queried. This parameter
is mutually exclusive to &eventHandler.

 responseFormat Specifies whether the format of a response is XML or JSON.

Examples:

An example of a Service Response Object query URL:

http://localhost:5099/sor/service/DemoService.Default/ResponseObject

 ?eventHandler=RequestHandler

 &responseFormat=XML

The result of this call will be similar to the example above and will return the data element representation.

 Browsing Service Configuration

HTTP and REST Application Programming Interface 38

Get Service Request Event

http://< Host>[:< Port >]/sor/service/< Service Name >/RequestEvent

 { ?eventHandler=< Handler Name > | ?eventId=< Event Id > }

 [&responseFormat={ XML | JSON }]

The service request event query allows users to retrieve representations of service request event as either XML or
JSON format documents. Users can specify a handler name or event id and query its request event; or navigate the
Service Reference HTML to access the request event. Note that by default an SOR reference presents results in
XML format. To generate event objects in JSON format this API call must be used.

The following elements are supported by the Service request Object query operation:

 URL Element Description

 Host HTTP host name of the node that a client is connecting to.

 Port HTTP port of the node (80 by default).

 Service Name Name of the service running on this node in <Type>.<Instance> format.

 eventHandler
Specifies name of the event handler for which the request object is queried. This
parameter is mutually exclusive to &eventId.

 eventId
Specifies the name of the event id for which the request object is queried. This parameter
is mutually exclusive to &eventHandler.

 responseFormat Specifies whether the format of a response is XML or JSON.

Examples:

An example of a Service Request Event query URL:

http://localhost:5099/sor/service/DemoService.Default/RequestEvent

 ?eventId=event.DemoService.request

 &responseFormat=XML

This may return a result such as the one below, representing a complete Data Event:

<DataEvent>

 <serialVersionUID>9969000000302071</serialVersionUID>

 <eventId>event.DemoService.request</eventId>

 <durable>false</durable>

 <timeStamp>0</timeStamp>

 <eventExpiration>0</eventExpiration>

 <dataProtected>Rw==</dataProtected>

 <acl>

 <ACL>GyUs</ACL>

 </acl>

 <coalesced>false</coalesced>

 <data SemanticType="string"/>

</DataEvent>

 Browsing Service Configuration

HTTP and REST Application Programming Interface 39

Get Service Response Event

http://< Host>[:< Port >]/sor/service/< Service Name >/ResponseEvent

 { ?eventHandler=< Handler Name > | ?eventId=< Event Id > }

 [&responseFormat={ XML | JSON }]

The service response event query allows users to retrieve representations of service response events as either XML

or JSON format documents. Users can specify a handler name or event id and query its response event; or
navigate the Service Reference HTML to access the request event. Note that by default an SOR reference presents
results in XML format. To generate event objects in JSON format this API call must be used.

The following elements are supported by the Service Response Event query operation:

 URL Element Description

 Host HTTP host name of the node that a client is connecting to.

 Port HTTP port of the node (80 by default).

 Service Name Name of the service running on this node in <Type>.<Instance> format.

 eventHandler
Specifies name of the event handler for which the request object is queried. This
parameter is mutually exclusive to &eventId.

 eventId
Specifies the name of the event id for which the request object is queried. This parameter
is mutually exclusive to &eventHandler.

 responseFormat Specifies whether the format of a response is XML or JSON.

Examples:

An example of a Service Response Event query URL:

http://localhost:5099/sor/service/DemoService.Default/ResponseEvent

 ?eventHandler=RequestHandler

 &responseFormat=XML

The result of this call will be similar to the example above and will return the data element representation.

 Browsing Service Configuration

HTTP and REST Application Programming Interface 40

Browsing the Entity Repository

The entity repository may also be accessed thru a standard web browser interface. All major browsers are
supported and allow users to work with service configuration artifacts and view configuration elements as XML
documents.

Repository access is only available to users with administrative rights. A browser based interface provides facilities
for uploading configuration files in order to update an existing configuration or create a new one. New artifacts
are validated and processed by the house keeper thread. Service interfaces may also be inspected using the
browser, allowing users to query and download service interface artifacts. See the platform’s Java Documentation
for examples.

Accessing the repository is done via the following URL:

http://localhost:5099/repository

By default the service engine implements REALM authentication to ensure that only users in the Admin GROUP are
able to access Repository content. This security can be configured to extend to other groups but may not be
disabled. Once valid credentials are supplied the user may access repository content and even upload
configuration artifacts for Services, Java Archives and Connection Factories.

	Table of Contents
	Document Conventions
	REST API Overview
	Representational State Transfer (REST)
	REST Architecture
	REST Interface Principles
	RESTful Web Services and API

	Using the REST API
	Accessing Service Engine Resources
	Configuring HTTP Acceptors
	Base Resource URI
	Request and Response Objects
	Semantic References

	Application Engine Clients
	Security Considerations
	Authentication Framework
	Basic Authentication
	Digest Authentication
	How Digest Authentication Works

	Delegated Authorization
	SSL Encryption

	RESTful API Guide
	Authorize
	Unauthorize
	Invoke Service
	Raise Event
	Raise Request
	Receive Event
	Receive Event with NoWait

	Querying Service Configuration
	Get Service List
	Get Service Reference
	Get Service Actionable Events
	Get Service Event Handlers
	Get Service Event Handler
	Get Service Configuration Object
	Get Service Request Object
	Get Service Response Object
	Get Service Request Event
	Get Service Response Event

	Browsing the Entity Repository

